the heat treatment characteristics of plastic molds
(1) Heat treatment characteristics of carburized steel plastic mold
1. For plastic molds with high hardness, high wear resistance and high toughness requirements, carburized steel should be used for manufacturing, and carburizing, quenching and low temperature tempering are the final heat treatment.
2. Requirements for the carburized layer, generally the thickness of the carburized layer is 0.8 ~ 1.5mm, when pressing plastics containing hard fillers, the mold carburized layer thickness is required to be 1.3 ~ 1.5mm, when pressing soft plastics, the carburized layer The thickness is 0.8~1.2mm. The carbon content of the carburized layer is preferably 0.7% to 1.0%. If carbon and nitrogen co-infiltration are used, the wear resistance, corrosion resistance, oxidation resistance and anti-sticking properties will be better.
3. The carburizing temperature is generally 900~920℃, and small molds with complex cavities can take 840~860℃ medium temperature carbonitriding. The carburizing heat preservation time is 5-10h, which should be selected according to the requirements for the thickness of the carburized layer. The carburizing process is suitable to adopt the hierarchical carburizing process, that is, the high temperature stage (900~920℃) is mainly to quickly infiltrate the surface of the part; the medium temperature stage (820~840℃) is mainly to increase the thickness of the carburized layer. A uniform and reasonable carbon concentration gradient distribution is established in the carburized layer, which is convenient for direct quenching.
4. The quenching process after carburizing is different according to the steel type. After carburizing, it can be used separately: reheating and quenching; direct quenching after graded carburizing (such as alloy carburized steel); direct quenching after medium temperature carbonitriding (such as industrial Small precision molds formed by cold extrusion of pure iron or low carbon steel); air quenching after carburizing (such as large and medium-sized molds made of high-alloy carburized steel).
(2) Heat treatment of hardened steel plastic machining mold
1. For molds with more complex shapes, heat treatment should be performed after rough machining and then finish machining to ensure the smallest deformation during heat treatment. For precision molds, the deformation should be less than 0.05%.
2. The surface requirements of the machining uhmw plastic mold cavity are very strict, so during the quenching and heating process, it is necessary to ensure that the surface of the cavity is not oxidized, decarburized, not corroded, overheated, etc. It should be heated in a protective atmosphere furnace or in a salt bath furnace after strict deoxidation. If a common box-type resistance furnace is used for heating, a protective agent should be applied to the surface of the mold cavity, and the heating rate should be controlled. Cooling medium, control the cooling rate to avoid deformation, cracking and scrapping during the quenching process. Generally, hot bath quenching is better, and pre-cooling quenching can also be used.
3. After quenching, it should be tempered in time, the tempering temperature should be higher than the working temperature of the mold, and the tempering time should be sufficient. The length depends on the mold material and section size, but at least 40-60min.
(3) Heat treatment of pre-hardened steel plastic mold
1. The pre-hardened steel is supplied in a pre-hardened state, and generally does not require heat treatment, but sometimes it needs to be modified forging, and the die blank after modification must be heat treated.
2. The pre-heat treatment of pre-hardened steel usually adopts spheroidizing annealing, the purpose is to eliminate forging stress, obtain uniform spherical pearlite structure, reduce hardness, increase plasticity, and improve the cutting performance or cold extrusion forming performance of the die blank.
3. The pre-hardening process of pre-hardened steel is simple, most of which adopt quenching and tempering treatment, and tempered sorbite structure is obtained after quenching and tempering. The high temperature tempering has a wide temperature range that can meet the various working hardness requirements of the mold. Due to the good hardenability of this kind of steel, oil cooling, air cooling or nitrate-salt graded quenching can be used during quenching.
(4) Heat treatment of age-hardening steel plastic mold
1. The heat treatment plastic cnc machining of age hardening steel is divided into two basic steps. First, the solution treatment is carried out, that is, the steel is heated to a high temperature, so that various alloying elements are dissolved in the austenite, and after the austenite is completed, the martensite structure is obtained by quenching. The second step is aging treatment, and aging is used to strengthen the mechanical properties that meet the final requirements.
2. The solution treatment heating is generally carried out in a salt bath furnace or a box furnace. The heating time can be respectively: 1min/mm, 2~2.5min/mm, quenching adopts oil cooling, and steel with good hardenability can also be air-cooled. If the final forging temperature can be accurately controlled when forging the die blank, solution quenching can be performed directly after forging.
3. The aging treatment is best carried out in a vacuum furnace. If it is carried out in a box furnace, in order to prevent the surface of the mold cavity from being oxidized, a protective atmosphere must be passed into the furnace, or aluminum oxide powder, graphite powder, cast iron scraps should be used in the box. Aging under protective conditions. Packing protection heating should appropriately extend the heat preservation time, otherwise it will be difficult to achieve the aging effect.
By PTJ Manufacturing Shop|Categories: Blog|Tags: cnc milling services, cnc turning services, milling parts, turning parts, machining parts, special parts,faqs,technical news,company news,material news |Comments Off
1. For plastic molds with high hardness, high wear resistance and high toughness requirements, carburized steel should be used for manufacturing, and carburizing, quenching and low temperature tempering are the final heat treatment.
2. Requirements for the carburized layer, generally the thickness of the carburized layer is 0.8 ~ 1.5mm, when pressing plastics containing hard fillers, the mold carburized layer thickness is required to be 1.3 ~ 1.5mm, when pressing soft plastics, the carburized layer The thickness is 0.8~1.2mm. The carbon content of the carburized layer is preferably 0.7% to 1.0%. If carbon and nitrogen co-infiltration are used, the wear resistance, corrosion resistance, oxidation resistance and anti-sticking properties will be better.
3. The carburizing temperature is generally 900~920℃, and small molds with complex cavities can take 840~860℃ medium temperature carbonitriding. The carburizing heat preservation time is 5-10h, which should be selected according to the requirements for the thickness of the carburized layer. The carburizing process is suitable to adopt the hierarchical carburizing process, that is, the high temperature stage (900~920℃) is mainly to quickly infiltrate the surface of the part; the medium temperature stage (820~840℃) is mainly to increase the thickness of the carburized layer. A uniform and reasonable carbon concentration gradient distribution is established in the carburized layer, which is convenient for direct quenching.
4. The quenching process after carburizing is different according to the steel type. After carburizing, it can be used separately: reheating and quenching; direct quenching after graded carburizing (such as alloy carburized steel); direct quenching after medium temperature carbonitriding (such as industrial Small precision molds formed by cold extrusion of pure iron or low carbon steel); air quenching after carburizing (such as large and medium-sized molds made of high-alloy carburized steel).
(2) Heat treatment of hardened steel plastic machining mold
1. For molds with more complex shapes, heat treatment should be performed after rough machining and then finish machining to ensure the smallest deformation during heat treatment. For precision molds, the deformation should be less than 0.05%.
2. The surface requirements of the machining uhmw plastic mold cavity are very strict, so during the quenching and heating process, it is necessary to ensure that the surface of the cavity is not oxidized, decarburized, not corroded, overheated, etc. It should be heated in a protective atmosphere furnace or in a salt bath furnace after strict deoxidation. If a common box-type resistance furnace is used for heating, a protective agent should be applied to the surface of the mold cavity, and the heating rate should be controlled. Cooling medium, control the cooling rate to avoid deformation, cracking and scrapping during the quenching process. Generally, hot bath quenching is better, and pre-cooling quenching can also be used.
3. After quenching, it should be tempered in time, the tempering temperature should be higher than the working temperature of the mold, and the tempering time should be sufficient. The length depends on the mold material and section size, but at least 40-60min.
(3) Heat treatment of pre-hardened steel plastic mold
1. The pre-hardened steel is supplied in a pre-hardened state, and generally does not require heat treatment, but sometimes it needs to be modified forging, and the die blank after modification must be heat treated.
2. The pre-heat treatment of pre-hardened steel usually adopts spheroidizing annealing, the purpose is to eliminate forging stress, obtain uniform spherical pearlite structure, reduce hardness, increase plasticity, and improve the cutting performance or cold extrusion forming performance of the die blank.
3. The pre-hardening process of pre-hardened steel is simple, most of which adopt quenching and tempering treatment, and tempered sorbite structure is obtained after quenching and tempering. The high temperature tempering has a wide temperature range that can meet the various working hardness requirements of the mold. Due to the good hardenability of this kind of steel, oil cooling, air cooling or nitrate-salt graded quenching can be used during quenching.
(4) Heat treatment of age-hardening steel plastic mold
1. The heat treatment plastic cnc machining of age hardening steel is divided into two basic steps. First, the solution treatment is carried out, that is, the steel is heated to a high temperature, so that various alloying elements are dissolved in the austenite, and after the austenite is completed, the martensite structure is obtained by quenching. The second step is aging treatment, and aging is used to strengthen the mechanical properties that meet the final requirements.
2. The solution treatment heating is generally carried out in a salt bath furnace or a box furnace. The heating time can be respectively: 1min/mm, 2~2.5min/mm, quenching adopts oil cooling, and steel with good hardenability can also be air-cooled. If the final forging temperature can be accurately controlled when forging the die blank, solution quenching can be performed directly after forging.
3. The aging treatment is best carried out in a vacuum furnace. If it is carried out in a box furnace, in order to prevent the surface of the mold cavity from being oxidized, a protective atmosphere must be passed into the furnace, or aluminum oxide powder, graphite powder, cast iron scraps should be used in the box. Aging under protective conditions. Packing protection heating should appropriately extend the heat preservation time, otherwise it will be difficult to achieve the aging effect.
PTJ Machining Capabilities |
Automatic Bar Machining – Multi-spindle cam automatic screw machines CNC Turning – CNC delivers peak cost efficiency in shorter volumes, as well as high capacity production of mechanically simple components Custom Machining - with up to 12 axes of control Multi Spindle Machining- ISO 9001:2015 certified Screw Machine Products – The number of customized production parts per hour can reach 10000pcs Swiss Machining – with up to 9 axes of CNC control, to produce precision components with complex geometries in one operation High Volume Machining – 100 Advanced Production Turning Bar Automatics On-line and Ready CNC Milling - Machining Fully compliant with the exacting requirements of our customers 5 axis (11 axis) Machining – Tolerance | 0.1mm alignment |
What Can we help you do next?
∇ Get more information about Cnc Machining Shop
→Case study-Find out what we have done.
→Ralated tips about cnc machining services
By PTJ Manufacturing Shop|Categories: Blog|Tags: cnc milling services, cnc turning services, milling parts, turning parts, machining parts, special parts,faqs,technical news,company news,material news |Comments Off